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Abstract

Positron emission tomography (PET) permits the noninvasive quantification of myocardial blood flow (MBF).

Myocardial flow reserve (MFR), calculated by dividing stress MBF by rest MBF is a reliable index for the

functional information of coronary artery disease. A pressure-derived physiological index, such as fractional flow

reserve (FFR) is also an important measurement. Both MFR and FFR values are used to evaluate coronary

physiology; however, but they are not interchangeable because each test has certain discrepancies.

In this systematic review, we provide an overview of coronary physiology with PET compared to pressure-

derived physiological indices.
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A
ssessment of the physiologic significance of stenosis and

morphological stenosis is highlighted for the evaluation

of coronary artery disease (CAD). There are several types of

cardiovascular tests that lead to large variations in the choice

of diagnostic modalities. Among them, myocardial perfusion

imaging (MPI) using positron emission tomography (PET)

permits both qualitative and quantitative assessments of

patients with CAD. PET has a significantly higher diagnostic

accuracy than single-photon emission computed tomography

because of its higher spatial resolution (1). Dynamic or list-

mode data collection has been used to quantify myocardial

blood flow (MBF) in recent practical PET MPI studies (2).

PET quantification allows assessment of the severity of

physiological stenosis.

Ischemic heart disease is caused by oxygen deficiency due

to an imbalance between demand and supply. The concept of

physiological stenosis is essential for CAD assessment.

Coronary revascularization guided by fractional flow reserve

(FFR) is the current standard for the functional assessment of

lesion severity in patients with CAD. Recently, resting

pressure-derived index, such as the instantaneous wave-free

ratio (iFR), has been used as alternative to FFR.

This article summarizes the physiologic basis for PET MPI

compared to pressure-wire-based assessment, including FFR,

which is one of the most established measures for identifying

physiologically significant coronary stenoses.

PET

MPI has played an important role in the diagnosis and

management of patients with known or possible CAD. PET is

one of the most established noninvasive techniques for the

assessment of blood flow to the myocardium. PET MPI

provides clear evidence for the diagnosis and risk assessment

of CAD (1). Dynamic first-pass perfusion PET imaging allows

noninvasive quantification of MBF. Estimation of myocardial

flow reserve (MFR), which is the ratio of stress/rest MBF,

provides several advantages to assess CAD and microvascular

dysfunction in addition to the conventional visual assessment.
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To compare the diagnostic performance of pressure-derived

physiological indices, relative flow reserve (RFR) is some-

times evaluated as the ratio of stress MBF in target myocardial

segments to that of reference myocardial segments (3).

Pressure-wire based assessment of physiological ischemia

FFR is a guide-wire-based procedure to measure blood

pressure differences across coronary artery stenosis, which can

be performed during cardiac catheterization to assess the

indication for percutaneous coronary intervention (PCI). FFR

is defined as the ratio of maximal flow achievable in the

stenotic coronary artery relative to the maximal blood flow if

the same coronary artery had no stenosis (4). Even if the

degree of stenosis is similar, the state of ischemia measured by

FFR differs depending on the lesion length, the existence of

collateral flow, and the shape of the stenotic lesion (5, 6).

Multiple clinical studies have shown that FFR values of less

than 0. 75 to 0. 80 have high specificity for identifying

ischemia, and 0.80 is the best-endorsed cutoff for deferral of

PCI for functionally nonsignificant stenoses (7, 8). FFR-

guided revascularization has been the gold standard for

assessing the functional significance of epicardial coronary

stenosis.

Recently, the instantaneous wave-free ratio (iFR) has been

introduced as a promising alternative to FFR (4). iFR is

performed using a pressure-sensitive catheter that is passed

distal to the coronary stenosis to measure the pressure drop in

a specific period called a wave-free period, but iFR is

measured under resting conditions without the need for a

hyperemic-inducing drug. Recent studies indicate that an iFR-

guided strategy is non-inferior to an FFR-guided strategy for

coronary revascularization in patients with CAD (9, 10).

Epicardial artery and microcirculation

The concept of physiological stenosis can be easily

understood by distinguishing between the epicardial arteries

(macrocirculation) and microcirculation. Both are blood

vessels that supply oxygen and nutrients to cardiac myocytes

(Figure 1). The epicardial arteries running on the surface of

the myocardium, which is typically more than 500 µm in

diameter, depicted on coronary angiography, hold less than

10% of the total myocardial blood volume (11). The remaining

is assumed by microcirculation, which is difficult to reveal

using conventional imaging techniques (12). Coronary

microvascular networks play an important role in coronary

vascular resistance in the myocardium. Both arteries consist-

ing of macro- and microcirculation have the possibility of

narrowing by atherosclerosis with plaque (Figure 2) (13). The

loss of coronary autoregulation is also one of the causes of

microcirculation dysfunction.

Systematic reviews comparing PET-derived flow indices

and pressure-derived physiological indices are summarized in

Table 1. The index obtained from PET and pressure-wire-

based assessments tends to have a modest, not very high

correlation. What are the reasons for the discrepancy between

these physiological indices?

MFR is well known to be influenced not only by stenosis of

the epicardial artery, but also by coronary microvascular

dysfunction due to risk factors, such as diabetes, dyslipidemia,

hypertension, renal dysfunction, obesity, and smoking (13,

14). Therefore, the MFR reflects the condition of the entire

coronary arterial circulation without distinction between

macro- and microcirculation. However, the results derived

from pressure-wire-based assessments are lesion-based para-

meters, which do not represent information on the size of the

perfused area exposed to ischemia due to stenosis, and it is

thought that they do not reflect the microcirculatory condition

(15). A recent study showed that FFR is slightly increased

during the presentation of microcirculation dysfunction (16).

Therefore, the correlation between pressure-wire-based

parameters and PET-derived MFR and stress MBF was

moderate. In the case of one- or two-vessel disease, it is worth

pointing out that PET-derived RFR has been shown to have a

higher correlation with FFR and iFR than MFR and stress

MBF (Table 1) (Figure 3).

The role of physiological measurements of CAD

The Clinical Outcomes Utilizing Revascularization and

Aggressive Drug Evaluation (COURAGE) trial showed that

PCI did not reduce coronary events compared to optimal

medical therapy (OMT) in patients with stable CAD, bringing

into question the effectiveness of revascularization (30). In

recent years, the ORBITA (percutaneous coronary interven-

tion in stable angina) study has reported that PCI does not

improve exercise time compared to placebo procedures in
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Figure 1 Schematic of macro- and microcirculation.

Although the boundary of each compartment is difficult to define

anatomically, the coronary arterial system is composed of macro-

and microcirculation. Macrocirculation is a proximal compartment

represented by epicardial coronary arteries (A). The distal smaller

compartment is microcirculation, which is represented by arterioles

and capillaries (B).



Ann Nucl Cardiol 2021；7（1）：57‒62 ― 59 ―Manabe et al.

Functional Assessment of Coronary Artery Disease

Figure 2 Shema of a combination of macro- and microcirculation.

Schema of normal (A), focal stenosis of an epicardial artery (B), microvascular disease (C), and

both macro- and microvascular diseases (D) are displayed. Focal and diffuse epicardial coronary

disease and coronary microvascular dysfunction have the potential to exist simultaneously. The

expansion of focal and diffuse diseases reflect the MFR and FFR values.

Table 1 Relationship between PET-derived flow indices and pressure-derived physiologic indices in patients with CAD

Study N PET tracer

PET-derived indices Pressure-derived indices Correlation

Stress MBF

(mL/g/min)
MFR (CFR) RFR FFR iFR

MFR (CFR)

vs. FFR

RFR vs.

FFR

Dai N, et al. (17) 109 13N-ammonia − 2.3±0.7 0.83±0.11 0.83±0.11 0.92±0.12 −
0.786

Spearman’sρ

Bendix K, et al. (18) 25 15O-water

2.49±0.67

(Diseased vessels)

2.89±0.65

(Refer ence vessels)

2.55±0.60

(Diseased vessels)

3.02±0.59

(Reference vessels)

−

0.68±0.18

(Diseased vessels)

0.90±0.08

(Refer ence vessels)

−
0.493

Pearson’s r
−

Everaars H, et al. (19) 40 15O-water 2.55±0.9 3.0±0.9 − 0.93 (0.84‒0.97) − − −

Driessen RS, et al. (20) 53 15O-water 1.57±0.59 2.02±0.69

0.65±0.18

(48 of 90 vascular

territories)

0.61±0.17

(61 of 90 vascular

territories)

−
0.56

Pearson’s r

0.76

Pearson’s r

Chih S, et al. (21)

40

(only heart

transplant

patients)

82Rb 1.95±0.75 2.38±0.82 − − − −
0.28

Pearson’s r

Kawaguchi N, et al. (22) 63 13N-ammonia

Diseased vessels;

1.67±0.54

Reference vessels;

2.19±0.52

Diseased vessels;

1.85±0.69

Reference vessels;

2.38±0.69

− − −
0.32

Spearman’sρ
−

Lee JM, et al. (23)

Hwang D, et al. (24)
115 13N-ammonia 1.80±0.43 2.13±0.58 0.77±0.09 0.81 (0.73‒0.85) 0.92 (0.87‒0.94)

0.400

Spearman’sρ

0.6830

Spearman’sρ

Lee JM, et al. (25) 56 13N-ammonia

High iFR vessels;

1.94±0.45

Low iFR vessels;

1.60±0.33

High iFR vessels;

2.27±0.50

Low iFR vessels;

1.76±0.33

‒

High iFR vessels;

0.77 (0.76‒0.78)

Low iFR vessels;

0.68 (0.61‒0.73)

High iFR

vessels;

0.92 (0.91‒0.94)

Low iFR vessels;

0.81 (0.71‒0.87)

− −

Lee JM, et al. (26) 130 13N-ammonia 2.08±0.55 2.25±0.66 0.85±0.11
0.84±0.11;

0.85 (0.78‒0.93)
−

0.38

Pearson’s r

0.78

Pearson’s r

Valenta I, et al. (27) 29 13N-ammonia

Diseased vessels;

1.44 (1.23‒1.72)

Reference vessels;

1.60 (1.37‒1.82)

Diseased vessels;

1.97 (1.71‒2.36)

Reference vessels;

2.23 (1.76‒2.37)

− − −
0.50

Pearson’s r
−

Peelukhana SV, et al. (28) 8 13N-ammonia 1.85±0.22 2.44±0.11 − 0.79±0.03 −
0.08

Spearman’sρ
−

De Bruyne B, et al. (29) 22 15O-water − − 0.60±0.26 0.61±0.17 − −
0.87

Pearson’s r

Values are presented as the mean±standard deviation or median (interquartile range).

CAD: coronary artery disease, CFR: coronary flow reserve, FFR: fractional flow reserve, iFR: instantaneous wave-free ratio, MBF: myocardial blood flow, MFR: myocardial flow reserve, PET: positron emission

tomography, RFR: relative flow reserve.



patients with medically treated angina and severe coronary

stenosis (31).

Meanwhile, the nuclear substudy of the COURAGE trial

showed that significant ischemia reduction was observed in

patients treated with PCI+OMT, and patients who achieved

≥5% ischemia reduction had a lower unadjusted risk for death

or myocardial infarction, particularly if baseline ischemia is

moderate to severe (32). The Fractional Flow Reserve Versus

Angiography for Multivessel Evaluation 2 study showed that

fractional FFR-guided PCI reduced events in patients with

stable CAD compared to medical therapy. Therefore,

functional ischemia diagnosis has become mandatory for

medical fee calculations in Japan.

The International Study of Comparative Health Effective-

ness with Medical and Invasive Approaches (ISCHEMIA)

trial was conducted under the hypothesis that early invasive

treatment strategies reduce coronary events in patients with

moderate or advanced ischemia compared to conservative

treatment strategies managed with medical treatment (33).

However, this trial showed that invasive treatment strategies

did not reduce the risk of cardiac events, including

cardiovascular death, myocardial infarction, hospitalization

for unstable angina or heart failure, and resuscitation after

cardiac arrest. The ISCHEMIA trial included patients with at

least moderate ischemia on imaging tests or severe ischemia

on exercise tests without imaging. Ischemia eligibility criteria

by nuclear perfusion test are in cases where ischemic changes

are qualitatively observed in 10% or more of the entire

myocardium, and quantitative evaluations, such as MBF and

MFR are not included in the analysis. PET is the most

validated and quantitative approach for evaluating myocardial

ischemia and coronary vasomotor function. Furthermore, there

is growing evidence that PET-based stress MBF and MFR

provide incremental prognostic value over the qualitative

assessment of myocardial ischemia (34, 35). Taqueti et al.

reported that coronary artery bypass grafting may be more

effective for long-term prognosis in patients with significant

CAD and reduced MFR (36), which may be partly explained

by the significant increase in MFR after complete revascular-

ization with coronary artery bypass grafting (37). Appropriate

criteria for coronary revascularization for stable angina have

been proposed, but based on the results of the ISCHEMIA

study, assessing the physiologic significance of stenosis may

help further subdivided indications.

Conclusion

Both PET and pressure-wire-based assessments, such as

FFR, are used to evaluate the physiologic significance of

stenosis, which is indispensable when considering the

treatment of patients with CAD. PET is a modality that can
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Figure 3 Representative case of macrovascular disease.

Angiography of the left coronary artery (LAD) (A), perfusion polar map of stress (B) and rest (C), rest

(D), stress myocardial blood flow (MBF) (E), and myocardial blood flow (MFR) (F) by
13
N-NH3 PET (E)

are shown. A man in his 70s had significant stenosis in the middle of the LAD (yellow arrow) with an FFR

value of 0.48 and an iFR value of 0.50. Ischemia in the mid to distal LAD territory and reduced MFR in the

LAD territory are seen on
13
N-NH3 PET.



reflect the entire vascular system, including epicardial and

microvascular conditions. FFR can detect physiological

ischemia of coronary artery lesions and provide information

directly related to treatment. Each test has a certain degree of

discrepancy. Myocardial ischemia associated with a micro-

vascular disease or diffuse coronary atherosclerosis without

significant epicardial stenosis will produce different results

between PET and pressure-wire based indices.
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